2,947 research outputs found

    Equilibrium of a Brownian particle with coordinate dependent diffusivity and damping: Generalized Boltzmann distribution

    Get PDF
    Fick's law for coordinate dependent diffusivity is derived. Corresponding diffusion current in the presence of coordinate dependent diffusivity is consistent with the form as given by Kramers-Moyal expansion. We have obtained the equilibrium solution of the corresponding Smoluchowski equation. The equilibrium distribution is a generalization of the Boltzmann distribution. This generalized Boltzmann distribution involves an effective potential which is a function of coordinate dependent diffusivity. We discuss various implications of the existence of this generalized Boltzmann distribution for equilibrium of systems with coordinate dependent diffusivity and damping.Comment: 11 pages, 1 figur

    Solving the Resource Constrained Project Scheduling Problem with Generalized Precedences by Lazy Clause Generation

    Full text link
    The technical report presents a generic exact solution approach for minimizing the project duration of the resource-constrained project scheduling problem with generalized precedences (Rcpsp/max). The approach uses lazy clause generation, i.e., a hybrid of finite domain and Boolean satisfiability solving, in order to apply nogood learning and conflict-driven search on the solution generation. Our experiments show the benefit of lazy clause generation for finding an optimal solutions and proving its optimality in comparison to other state-of-the-art exact and non-exact methods. The method is highly robust: it matched or bettered the best known results on all of the 2340 instances we examined except 3, according to the currently available data on the PSPLib. Of the 631 open instances in this set it closed 573 and improved the bounds of 51 of the remaining 58 instances.Comment: 37 pages, 3 figures, 16 table

    Creep motion of a granular pile induced by thermal cycling

    Get PDF
    We report a time-resolved study of the dynamics associated with the slow compaction of a granular column submitted to thermal cycles. The column height displays a complex behavior: for a large amplitude of the temperature cycles, the granular column settles continuously, experiencing a small settling at each cycle; By contrast, for small-enough amplitude, the column exhibits a discontinuous and intermittent activity: successive collapses are separated by quiescent periods whose duration is exponentially distributed. We then discuss potential mechanisms which would account for both the compaction and the transition at finite amplitude.Comment: 4 pages, 5 figures, accepted for publication in Physical Review Letters (05sep08
    • …
    corecore